0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Geometric Design Methodology for Deployable Self-Locking Semicylindrical Structures

Author(s):

Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 14
Page(s): 1690
DOI: 10.3390/buildings14061690
Abstract:

Due to their unique bistable characteristics, deployable self-locking structures are suitable for many engineering fields. Without changing the geometrical composition, such structures can be unfolded and locked solely by the elastic deformation of materials. However, their further applications are hampered by the lack of simple and systematic geometric design methodologies that consider arbitrary structural curvature profiles. This paper proposes such a methodology for double-layer semicylindrical grid structures to simplify their cumbersome geometric design. The proposed methodology takes joint sizes into account to ensure that the design results can be applied to actual projects without further adjustments. By introducing symmetry into the structural units (SUs) and selecting reasonable geometric parameters that describe the structural side elevation profile, a concise set of simultaneous nonlinear geometric constraint equations is established, the solution of which provides the geometric parameter values of the grid shape. On this basis, the remaining geometric parameter values, i.e., the geometric parameter values of the inner scissor-like elements (SLEs) of each SU, can be achieved from the equations derived from general SLEs. Design examples and the assembled physical grid structure indicate the feasibility and wide applicability of the proposed geometric design methodology.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10787728
  • Published on:
    20/06/2024
  • Last updated on:
    20/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine