0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Full-Scale Test and Load-Bearing Capacity Evaluation of Synthetic-Polymer-Fiber-Reinforced Concrete Tetrapods under Quasi-Static Loading

Author(s):

Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 12
Page(s): 2143
DOI: 10.3390/buildings12122143
Abstract:

This paper studies the load-bearing capacity of various concrete tetrapods under quasi-static loading. The tetrapods were made of plain concrete and synthetic-polymer-fiber-reinforced concrete. Load tests of the tetrapods were performed. The maximum load-bearing capacity and the residual-load-bearing capacity of the tetrapods (the load-bearing capacity after the first crack or at different crack widths) were evaluated. The strength and residual-strength values were back-calculated from the load-bearing capacities, and compared with available data from the literature. The specimens with and without fibers achieved similar maximum load-bearing capacities, with cracks occurring at identical locations. However, the differences in residual-load-bearing capacity were more significant. The synthetic-polymer-fiber-reinforced concrete tetrapods exhibited relatively high residual-load-bearing capacities, even at higher displacements and crack widths. Two different calculation-procedures were used for the load-bearing-capacity evaluation. A load-displacement calculation based on the moment-versus-curvature relation and the plastic-hinge approach was performed, and additionally proved the applicability of the employed calculation-procedures for the concrete tetrapod load-bearing-capacity evaluation.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10699833
  • Published on:
    10/12/2022
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine