0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Full-Scale Assessment of Seismic and Wind Load Performance in the Design of a Flexible Solar-Shading Double-Skin Façade

Author(s):
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 13
Page(s): 2945
DOI: 10.3390/buildings13122945
Abstract:

Cable-supported façades represent a novel approach in the design and technology of double skin façades (DSFs). This type of system not only offers flexibility in terms of exterior finishes, but also regulates the access of solar radiation, thereby transforming the appearance of the building in response to varying daylight conditions. However, the structural performance of these façades under wind, impact, and seismic loads remains an active area of research. The study is a groundbreaking work that experimentally evaluates the wind and seismic behaviour of these type of façades. The methodology used for the evaluation of flexible masonry facades includes laboratory tests analysing the individual capacity of the connections and materials of the system under standardized and non-standardized procedures. A full-scale experimental sub-assembly specimen of a representative module of the façade is also subjected to uniformly distributed pressures of wind load tests, as well as hard body and soft body impact tests. The setup considered the border conditions, tension loads, and actual materials. Furthermore, the earthquake assessment includes tests of full-scale specimens subjected to these demands. The results show up to 30% enhanced performance relative to similar systems reported in the literature. Furthermore, research findings facilitated the refinement and redesign of the system components, thereby validating the DSF case study.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753703
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine