0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

FRP Composite in Mitigating Seismic Risk of RC Structures in Near-Fault Regions with/without Aftershocks

Author(s):

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-17
DOI: 10.1155/2020/2847027
Abstract:

The literature related to earthquakes and fibre reinforced polymer (FRP) retrofitting can be divided into two main categories: (1) the applications of FRP to retrofit structures subjected to single traditional earthquakes and (2) the effects of mainshock-aftershock sequences on original structures (without FRP retrofitting). Research on using FRP to mitigate the risk of pulse-type mainshock-aftershock sequences for reinforced concrete (RC) structures located in near-fault regions is hardly found in the literature and is thus the aim of this study. To achieve this aim, a four-storey RC frame, near-fault mainshocks, and seismic sequences were selected. The frame was retrofitted using FRP wraps at plastic hinge locations. Nonlinear time history and damage analyses of the original and FRP-retrofitted frames subjected to these near-fault mainshocks and seismic sequences were conducted. The results showed that aftershocks significantly increase the damage indices of the frames, shifting the damage state of the original frame from severe damage to collapse and the damage state of the FRP-retrofitted frame from light damage to moderate damage. FRP retrofitting successfully reduced the risk of seismic sequences by reducing the damage two levels, shifting the damage state of the original frame from collapse to moderate damage.

Copyright: © 2020 Vui Van Cao and Son Quang Pham et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10427161
  • Published on:
    13/07/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine