0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Fracture Energy Analysis of Concrete considering the Boundary Effect of Single-Edge Notched Beams

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-10
DOI: 10.1155/2018/3067236
Abstract:

The method of determining concrete fracture energy recommended by RILEM has an obvious size effect, so determining fracture energy that is unaffected by size of the test specimen is difficult. In this study, 60 high-strength concrete single-edge notched beams (SENBs) of different sizes, crack length-to-depth ratios, and span-to-depth ratios were subjected to the three-point loading test as recommended by RILEM. Then, the influences of the boundary effect on the fracture energy were identified. Based on the SENB boundary effect model, a piecewise function of the interrelationships between the experimental test fracture energy Gf, the local fracture energy Gf, and the fracture energy unaffected by specimen size GF was established. The applicability of the boundary effect model was verified using the test results from this study and from the previously published research. The results show that the local fracture energy distribution in the boundary influence region was nonuniform. The smaller the local fracture energy was, the closer it was to the rear boundary of the specimen. The influence length a of the boundary increased with the increasing specimen size. Based on the bilinear distribution model of the local fracture energy Gf, the fracture energy unaffected by beam size GF can be obtained according to the fracture energy Gf measured for laboratory-scale small-sized SENB specimens. Furthermore, the model predictions are in good agreement with experimental observations.

Copyright: © 2018 Ping Xu et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10222560
  • Published on:
    23/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine