Fractality–Autoencoder-Based Methodology to Detect Corrosion Damage in a Truss-Type Bridge
Author(s): |
Martin Valtierra-Rodriguez
Jose M. Machorro-Lopez Jesus J. Yanez-Borjas Jose T. Perez-Quiroz Jesus R. Rivera-Guillen Juan P. Amezquita-Sanchez |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Infrastructures, 23 August 2024, n. 9, v. 9 |
Page(s): | 145 |
DOI: | 10.3390/infrastructures9090145 |
Abstract: |
Corrosion negatively impacts the functionality of civil structures. This paper introduces a new methodology that combines the fractality of vibration signals with a data processing stage utilizing autoencoders to detect corrosion damage in a truss-type bridge. Firstly, the acquired vibration signals are analyzed using six fractal dimension (FD) algorithms (Katz, Higuchi, Petrosian, Sevcik, Castiglioni, and Box dimension). The obtained FD values are then used to generate a gray-scale image. Then, autoencoders analyze these images to generate a damage indicator based on the reconstruction error between input and output images. These indicators estimate the damage probability in specific locations within the structure. The methodology was tested on a truss-type bridge model placed at the Vibrations Laboratory from the Autonomous University of Queretaro, Mexico, where three damage corrosion levels were evaluated, namely incipient, moderate, and severe, as well as healthy conditions. The results demonstrate that the proposal is a reliable tool to evaluate the condition of truss-type bridges, achieving an accuracy of 99.8% in detecting various levels of corrosion, including incipient stages, within the elements of truss-type structures regardless of their location. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.27 MB
- About this
data sheet - Reference-ID
10798224 - Published on:
01/09/2024 - Last updated on:
01/09/2024