0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Forecasting of Hazard Zone due to Storm Surge Using SIND Model

Author(s): ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-14
DOI: 10.1155/2021/8852385
Abstract:

We have developed the SIND (scientific interpolation for natural disasters) model to forecast natural hazard zone for storm surge. Most previous studies have been conducted to predict hazard zone with numerical simulations based on various scenarios. It is hard to predict hazard zone for all scenarios and to respond immediately because most numerical models are requested a long simulation time and complicated postprocess, especially in coastal engineering. Thus, in this study, the SIND model was developed to overcome these limitations. The principal developing methods are the scientific interpolation for risk grades and trial and error for parameters embedded in the governing equation. Even designed with hatch files, applying disaster characteristics such as the risk propagation, the governing equation for storm surge in coastal lines was induced from the mathematical solver, COMSOL Multiphysics software that solves partial differential equations for multiple physics using FEM method. The verification process was performed through comparison with the official reference, and the accuracy was calculated with a shape similarity indicating the geometric similarity of the hazard zone. It was composed of position, shape, and area criteria. The accuracy of about 80% in terms of shape similarity was archived. The strength of the model is high accuracy and fast calculation time. It took only less than few seconds to create a hazard map for each scenario. As future works, if the characteristics of other disasters would be understood well, it would be able to present risk propagation induced from each natural disaster in a short term, which should help the decision making for EAP.

Copyright: © 2021 Dong Hyun Kim et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10608934
  • Published on:
    22/05/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine