0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Force Transfer Mechanism and Behavior Insights for a Large-Diameter CFST Column to Steel Beam Connection

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 13
Page(s): 2996
DOI: 10.3390/buildings13122996
Abstract:

Concrete-filled steel tube (CFST) columns with internal ring-plate-reinforced connections are increasingly used in high-rise buildings. However, the behavior and optimal design of such large-scale connections is not well established. This study presents a numerical investigation of the structural performance of a ring-plate-reinforced CFST column to steel beam connection. The paper begins by reviewing a previous experimental study. Subsequently, nonlinear finite element models were developed and validated using the test results. Parametric analyses were conducted to evaluate the effects of the ring plate dimensions, friction coefficient, and concrete defects on the load transfer mechanism. The results showed that the ring plate and friction force together effectively transferred the beam load to the concrete core. An optimal ring plate width of 75 mm was identified. Concrete defects significantly reduced the load carrying capacity of the ring plate. The stress distribution in the concrete cross section transitioned from nonuniform to uniform over a length approximately equal to the column diameter. The connection design was found adequate for the prototype structure analyzed. The study provides valuable guidance for improving ring-plate-reinforced connection design in future construction.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753437
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine