0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Flexural Performance of RC Beams Strengthened with High-Strength Steel Wire Mesh and UHPC

Author(s):



ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 15
Page(s): 589
DOI: 10.3390/buildings15040589
Abstract:

This study proposes a strengthening technique comprising a combination of high-strength steel wire mesh and ultra-high performance concrete (UHPC) to address the challenge of the insufficient bearing capacity of existing structures. The tensile performance of high-strength wire mesh and the crack resistance of UHPC were comprehensively considered in this technique. To evaluate the influence of the steel fiber volume ratio and the high-strength steel mesh strengthening ratio on the axial tensile performance, uniaxial tensile tests were carried out on two sets of dumbbell-shaped specimens. A constitutive model of the wire mesh UHPC that matched the experimental results was established. The finite element analysis of RC beams strengthened with high-strength wire mesh and UHPC was carried out, based on this constitutive model. The experimental results indicated the following: (a) The crack resistance and ultimate strength of the specimen reinforced with the high-strength steel wire mesh were effectively enhanced, with enhancement ratios of 97.8% and 124.8%, respectively. (b) The embedded interactions between the steel wire mesh and UHPC were simulated by considering the material nonlinearity. The finite element modeling of RC beams strengthened with wire mesh UHPC was achieved. (c) Positive correlations were observed between the thickness of the UHPC layer, the steel fiber volume ratio, and the high-strength wire mesh layer with the flexural capacity of the strengthened beams. The cracking and ultimate moments were maximally enhanced by 96.2% and 99.4%, respectively.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10820757
  • Published on:
    11/03/2025
  • Last updated on:
    11/03/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine