0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Flexural Behaviour of Lightweight Reinforced Concrete Beams Internally Reinforced with Welded Wire Mesh

Author(s): ORCID


ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 12
Page(s): 1374
DOI: 10.3390/buildings12091374
Abstract:

Lightweight clay aggregate (LECA) is manufactured by heating clay with no lime content in the kiln; as a result, the water evaporates and angular clay balls with pore structures are obtained. LECA possess internal curing properties as any other lightweight aggregate due to their pore structure and higher water absorption capacity. In this work, experimental and analytical behaviour using LECA as a 100% replacement for coarse aggregate to make lightweight concrete (LWC) beams was studied. The LWC beams were compared to the conventional concrete beams in load-deflection, energy absorption capacity, and ductility index. Internal mesh reinforcement using welded wire mesh (WWM) of (4 layers of 15 mm square spacing, 4 layers of 10 mm square spacing, and 4 layers of 15 mm and 10 mm mesh placed alternatively) was provided to enhance the load-carrying capacity of the LWC beam without increasing the dimensions and self-weight of the beams. The beam internally reinforced with WWM exhibited higher load carrying capacity and withstood more significant deflection without sudden failure. The internal reinforcement of WWM is provided to make steel rebars, and WWM works monolithically while loading; this will reduce the stress on tension bars and increase load-carrying capacity. Finally, the generated analytical findings agreed well with the experimental data, demonstrating that the analytical model could mimic the behaviour of LWC beams with WWM.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692681
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine