0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Fire Behavior of Continuous Assembled Monolithic Hollow-Ribbed Slabs

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-14
DOI: 10.1155/2020/2940894
Abstract:

To further understand the fire behavior of assembled monolithic hollow-ribbed (AMH) slab floor, a fire test was performed on six small-scale continuous AMH slabs (two by three). In this paper, the special designed furnace and relevant experimental phenomena are briefly introduced. Detailed experimental results in the form of furnace temperatures, temperature distributions, vertical deflections, and failure criteria are presented. The test data indicate that almost all the AMH slabs showed upward displacements during the fire tests, which is very distinct with the isolated AMH slab under fire. As the edge girders transformed into the frame girders gradually, the edge girders would show displacement plateaus. The integrity of the AMH slab under elevated temperature should receive more critical role to serve as its failure criterion compared with the load bearing function. Except fire environment, boundary constraint conditions also have a considerable effect on the elevated temperature deformations of the structural elements. At last, several rational suggestions are provided to improve the fire resistance of the AMH slabs.

Copyright: © B. Li et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10433944
  • Published on:
    11/09/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine