Finite Element Analysis of the Flexural Behavior of Steel Plate–High-Performance Concrete (HPC) Slab and Beam Composite Structures
Author(s): |
Jian-Peng Li
Lu-Yao Zhang Ying-Jie Zhu Guo Zhao Fu-Zhong Liu Tao Zhang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 24 December 2024, n. 1, v. 15 |
Page(s): | 27 |
DOI: | 10.3390/buildings15010027 |
Abstract: |
This paper studied the flexural behavior of flat steel–HPC composite beams and corrugated steel–HPC composite slabs using finite element analysis. The accuracy and reliability of the finite element model were verified by comparing it with related experimental data in the literature. The influence of different factors on the flexural bearing capacity of the composite slab/beam is discussed. Increasing the concrete thickness, friction coefficient, concrete strength, and wave height of a corrugated steel plate and employing an optimized rebar configuration significantly enhanced the flexural behavior. Remarkably, increasing the thickness of the steel plate and the number of studs also improved the flexural bearing capacity, but an over-reinforcement phenomenon could easily occur, not being conducive to optimal structural performance. An equation for calculating the flexural bearing capacity of steel–HPC composite slab/beam structures considering the effects of the number of studs and the friction coefficient is proposed. The rationality of the proposed method was verified through the finite element results, providing a more accurate method for designing steel–HPC composite structures. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
13.45 MB
- About this
data sheet - Reference-ID
10810101 - Published on:
17/01/2025 - Last updated on:
17/01/2025