Fatigue Performance of Rib Beam Bridge Slabs Reinforced with Polyurethane Concrete Based on the Damage Theory
Author(s): |
Yifan Wang
Tianlai Yu linlin Zhang Lihui Yin Yuxuan Wu Binglin Chen |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 7 June 2022, n. 6, v. 12 |
Page(s): | 704 |
DOI: | 10.3390/buildings12060704 |
Abstract: |
In this paper, the rib beam bridge slabs were taken as the research object. Static load and fatigue tests were carried out on the benchmark bridge slabs to determine the ultimate load capacity and fatigue life of the bridge slabs. Then, the bridge slab was pre-damaged and reinforced with polyurethane concrete. A fatigue test was carried out on the reinforced bridge slab to study the fatigue performance. Based on the damage theory, the fatigue damage reinforcement finite element models of the bridge slabs under different damage degrees were established. The fatigue performance of the reinforced bridge slabs was systematically studied. The results show that the fatigue damage of the reinforced bridge slab developed in stages. Compared to the unreinforced bridge slab, the fatigue damage of the reinforced bridge slab was significantly reduced at each stage. According to the least square method and numerical analysis results, a residual-bearing-capacity model including damage degree and fatigue cycles of the reinforced bridge slabs is proposed, which can be used as a reference in bridge slab reinforcement design. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.66 MB
- About this
data sheet - Reference-ID
10679389 - Published on:
17/06/2022 - Last updated on:
10/11/2022