0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Fatigue Life Prediction of S235 Details Based on Dislocation Density

Author(s): (University of Coimbra Portugal)
(University of Porto Portugal)
(Federal Fluminense University Rio de Janeiro Brasil)
(CIDE‐UME University of Trás‐os‐Montes and Alto Douro Vila Real Portugal)
(University of Coimbra Portugal)
Medium: journal article
Language(s): English
Published in: ce/papers, , n. 3-4, v. 6
Page(s): 2558-2563
DOI: 10.1002/cepa.2644
Abstract:

Global approaches have been the main procedure to design structural details and components under fatigue loading. This procedure is easy to apply but it disregards not only the effect of the material type but also the influence of the geometry in complex components. On the other hand, local approaches rely on the specific local damage parameters that can be assessed for each type of material and detail geometry. The parameters derived from low cycle fatigue (LCF) tests are the most common damage parameters used to predict the fatigue life and establish reliable fatigue design approaches. Recently, Huffman proposed a fatigue damage model based on strain energy density and on the dislocation density of the material. In this regard, S235 was selected to perform a metallographic and mechanical assessment aiming to define the dislocation density of the material and to describe the fatigue behavior using the Huffman damage model. Additionally, fatigue tests on structural details (plate with hole) were conducted and results were compared with fatigue life predictions based on Huffman local approach. It was found that Huffman model based on dislocation density is a reliable approach to predict the fatigue life of structural steel details.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1002/cepa.2644.
  • About this
    data sheet
  • Reference-ID
    10766960
  • Published on:
    17/04/2024
  • Last updated on:
    17/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine