Failure Evolution Law of Reinforced Anchor System under Pullout Load Based on DIC
Author(s): |
Yue Li
Chongming Gao Qian Li Qiqi Wu Wenjun Meng |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2020, v. 2020 |
Page(s): | 1-12 |
DOI: | 10.1155/2020/6640687 |
Abstract: |
To obtain the failure evolution law, a pullout test model of the anchor system is proposed based on the digital image correlation (DIC) measurements. By the study of the displacement field, the strain field, and the force transfer law of the anchor system under the pulling load, the failure law of the anchor system is revealed. The results show that (1) the failure mode and the ultimate bearing capacity of the anchor system are related to the thickness of the anchor agent; (2) in the anchor system, the pulling force is gradually transferred from the loading end to the free end along the steel bar, and the greater the thickness of the anchoring agent, the deeper the transfer range; (3) during the loading, the deformation of the anchoring system is mainly concentrated at the interface between the anchoring agent and the concrete and expands to the depth along the steel bar; and (4) the failure evolution rate of the anchorage system is related to the loading stage. The failure evolution of the anchor system can be divided into the elastic phase, the plastic phase, and the deformation rebound phase. |
Copyright: | © Yue Li et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
8.33 MB
- About this
data sheet - Reference-ID
10535976 - Published on:
01/01/2021 - Last updated on:
02/06/2021