External Sulphate Attack on Alkali-Activated Slag and Slag/Fly Ash Concrete
Author(s): |
Dali Bondar
Sreejith Nanukuttan |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 18 January 2022, n. 2, v. 12 |
Page(s): | 94 |
DOI: | 10.3390/buildings12020094 |
Abstract: |
Two types of alkali-activated material (AAM) concretes were exposed to various sulphate bearing-solutions for over two years. Physical changes to the concrete specimen and chemical changes in the exposure liquid were studied in an attempt to understand how sulphate attack occurs in such binders and the role the mix variables play in offering resistance against such attack. The mix variables of alkali-activated slag concrete (AASC) included water-to-binder ratio, percentage of alkali, and the SiO2/Na2O ratio (silica modulus, Ms); for alkali-activated slag/fly ash (AA-S/F) concrete, the mix variables included slag/fly ash ratio and the SiO2/Na2O ratio. The exposure solutions included water, magnesium sulphate (5%), sodium sulphate (5%), calcium sulphate (0.2%), and two concentrations of sulphuric acid solutions, pH 3 and pH 1. The physical changes studied were length and mass change, visual appearance, and change in compressive strength. The exposure liquids were analysed for change in pH and ionic composition. Findings show that the AA-S/F blend performs better than AASC in sulphate environments, based on strength and change in length. Exposure to water resulted in the most expansion/shrinkage in all mixes studied. An empirical model was proposed for predicting the change in compressive strength for AAS&AA-S/F concretes based on mass gain. Further, a simple performance criterion was put forward for mixes in sulphate environments based on mass gain. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.83 MB
- About this
data sheet - Reference-ID
10657735 - Published on:
17/02/2022 - Last updated on:
01/06/2022