0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Exterior Wood-Frame Walls—Wind–Vapour Barrier Ratio in Denmark

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 11
Page(s): 428
DOI: 10.3390/buildings11100428
Abstract:

Wood-frame walls in cold climates are traditional constructed with a vapour barrier that also constitutes the air-tightness layer. Polyethylene foil as a vapour barrier is likely used; however, other building materials can be used to obtain correspondingly sufficient properties. 1D hygrothermal simulations were conducted for a wood-frame structure to investigate the wind–vapour barrier ratio, and if the vapour barrier of polyethylene foil could be omitted and replaced by other materials. The results were postprocessed using the VTT mould model. The results showed how wood-frame walls can be designed with respect to internal humidity class and diffusion resistance divided into three categories: no risk for mould growth, needs further investigation, and is not performing well as the risk for mould growth is present. For internal humidity classes 1–3, the ratio between wind and vapour barrier must be about 1:5, and 1:10 for classes 4 and 5 to be on the safe side. Simulations were performed for the climate of Lund, Sweden, which were used to simulate climate in Denmark too. Nevertheless, the results are related to climate data and, thus, the location.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10631229
  • Published on:
    01/10/2021
  • Last updated on:
    05/10/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine