0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Explosion Disaster Distribution Characteristics and Outlet Open-Close Effect of Turning Roadway

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-10
DOI: 10.1155/2021/6655789
Abstract:

In this study, under the open-close conditions of a roadway outlet, ANSYS/LS-DYNA was used to build models of explosions on roadways with 0° and 90° bending angles, to compare and analyze the shock wave propagation characteristics and variation laws. Combined with the damage degree classification of shock wave overpressure to human body, the destructive effect zoning of explosion in roadway under the condition of opening and closing of roadway entrance was studied. The results showed that as the bending angle increased, the peak overpressure attenuation of the shock waves became prominent, and the arrival time for the same distance increased. The closure of the roadway outlet had a distance effect on the peak overpressure of the shock waves. The explosion shock waves caused the peak overpressure to rise sharply owing to the reflection and stacking effects near the closure. In the far zone of the outlet, the attenuation of the shock waves was too fast and had minimal impact on the peak overpressure. In addition, the existence of the roadway closure increased the damage area and the severity of the blast wave to human body as a whole. With an increase in the bending angle, the damage range and severity decreased.

Copyright: © Pengfei Lv et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10613159
  • Published on:
    09/07/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine