0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Exploring the Potential of Machine Learning in Stochastic Reliability Modelling for Reinforced Soil Foundations

Author(s): ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 954
DOI: 10.3390/buildings14040954
Abstract:

This study introduces a novel application of gene expression programming (GEP) for the reliability analysis (RA) of reinforced soil foundations (RSFs) based on settlement criteria, addressing a critical gap in sustainable construction practices. Based on the principles of probability and statistics, the soil uncertainties were mapped using the first_order second-moment (FOSM) approach. The historical data generated via a parametric study on a validated finite element numerical model were used to train and validate the GEP models. Among the ten developed GEP frameworks, the best-performing model, abbreviated as GEP-M9 (R2 = 0.961 and RMSE = 0.049), in the testing phase was used to perform the RA of an RSF. This model’s effectiveness in RA was affirmed through a comprehensive evaluation, including parametric sensitivity analysis and validation against two independent case studies. The reliability index (β) and probability of failure (Pf) were determined across various coefficient of variation (COV) configurations, underscoring the model’s potential in civil engineering risk analysis. The newly developed GEP model has shown considerable potential for analyzing civil engineering construction risk, as shown by the experimental results of varying settlement values.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773699
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine