0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Explanation on the Abnormal Behavior during the Nanoindentation Holding Stages by Amplifying Oscillation

Author(s):
ORCID

ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-11
DOI: 10.1155/2022/8886965
Abstract:

Recently, the holding states of nanoindentation experiments have been widely used to analyze the time-dependent deformations of various rocks, and the dynamic mechanical analysis (DMA) method seems to be more applicable than the quasi-static mechanical analysis (QMA) method when the influence of creep deformation on mechanical properties of rocks was analyzed. However, the former method causes an abnormal behavior during the creep holding stages that was not clearly interpreted.2 Consequently, in this study, by amplifying the oscillation of the DMA method, the mechanical mechanism of this phenomenon was explained. Experimental results confirm that the rheological deformation of rocks consists of the creep deformation (depth increasing) and the elastic aftereffect deformation (depth decreasing) during the creep time with small oscillation; once the elastic aftereffect deformation exceeds the creep deformation, the abnormal behavior can be observed. Besides, some other abnormal behaviors might be found for other rock materials when the DMA method with different oscillations is used, which illustrates the complexity and limitation of applying this method. Thus, the QMA method was recommended to investigate the above questions in future studies.

Copyright: © 2022 Jiahui Xu et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10657372
  • Published on:
    17/02/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine