0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Study on the Impact Resistance of Polymer-Modified Steel Fiber-Reinforced Recycled Aggregate Concrete

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 13
Page(s): 2965
DOI: 10.3390/buildings13122965
Abstract:

Recycled aggregate concrete (RAC), composed of aggregates sourced from construction solid waste, has garnered significant attention owing to its notable environmental friendliness. In this study, waterborne epoxy resin (WER) and steel fibers (SFs) were introduced into the RAC to enhance its performance. Orthogonal tests were meticulously designed, with the substitution rate of recycled aggregate (RA), SF dosage and WER dosage as variable factors, to comprehensively analyze the splitting tensile strength and impact resistance of concrete. The impact resistance of concrete was investigated via the drop weight test method. Furthermore, scanning electron microscopy (SEM) was employed to scrutinize the microstructure of concrete, investigating the modification mechanism of WER. The results indicated that the addition of SFs exerted the most pronounced influence on the properties of RAC. As the addition of SFs increased from 0 to 1.0%, there were significant enhancements in the splitting tensile strength and impact energy of the specimens. WER exhibited notable improvements, primarily on the splitting tensile strength, while demonstrating an adverse effect on the impact resistance. Utilizing the Weibull distribution theory, the results of the impact tests were fitted and analyzed to predict the impact life of different mixtures. The predicted results showed high correlations with the measured values.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753356
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine