0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Study on the Impact of Landslide-Generated Waves against Wharf Pile

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-14
DOI: 10.1155/2020/8891406
Abstract:

Landslide-generated waves have caused great catastrophic damage to the infrastructure, e.g., dam and wharf, because of the extreme loading in the reservoir area, while the wharf pile is rarely designed to withstand the loading associated with landslide-generated waves. This experimental study was conducted in a generalized 3D basin to simulate the waves generating process and explore the impact of the dynamic pressure process on the wharf pile. As the phenomenon that landslide-generated impulse waves impacted on the wharf pile in the form of dynamic pressure, the distribution pattern of the dynamic pressure along the water column was analyzed and revealed specifically. The results indicate that the dynamic pressure was constant below the water surface along the vertical direction and its magnitude was correlated with the wave amplitude as well as wave celerity. On this basis, a multivariate dimensionless analysis was implemented, and the empirical formulas for the dynamic pressure were established. Furthermore, the total force acting on the wharf pile was given. From a practical perspective, these findings could offer guidance to prevent the damage of the impulse wave pressure on the wharf pile.

Copyright: © Ping Mu et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10535985
  • Published on:
    01/01/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine