0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Study on the Effect of Steel Reinforcement Ration on the Cracking Behaviour of FRP-Strengthened RC Elements

Author(s):

ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 950
DOI: 10.3390/buildings14040950
Abstract:

This paper examines the cracking behaviour of reinforced concrete beams strengthened by externally bonded fiber-reinforced polymer. The crack opening of RC structures is a key parameter for the durability of concrete structures. It is of vital importance for designers to be able to make correct estimations of the crack opening values of strengthened structures. FRP strengthening affects the cracking behaviour of RC beams with different steel percentages. Beams have been tested under four-point bending mechanical tests until failure with three steel ratios and two layers of externally bonded wet carbon fibers (CFRP). In order to measure the crack opening during loading, Digital Image Correlation is used to obtain the crack opening along the beam during load functioning. The results allow for a comparison of the RC beams with and without FRP and enhance the effect of FRP on crack opening. The crack width was compared with the theoretical values obtained based on the relation proposed by Eurocode 2 (EC2). The comparison enhanced the need to propose a modified relation. Subsequently, an empirical model was established as a modification of EC2, considering the presence of a CFRP system. The corresponding results were compared and discussed to validate the model. For the same level of loads, the crack opening can be reduced by 20 to 50% depending on the level of steel ratio.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773505
  • Published on:
    29/04/2024
  • Last updated on:
    29/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine