0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Study on Simulation Filling of New Underwater Cementitious Filling Material (NWC-FM)

Author(s): ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-9
DOI: 10.1155/2022/2618478
Abstract:

To solve the problem of waste slag treatment of slurry shields, a reuse scheme in which waste shield mud is used to replace traditional karst cave grouting filling material which is proposed; thus, a new type of underwater cementitious filling material (NWC-FM) is developed. NWC-FM is convenient, inexpensive, and environmentally friendly. Its mix proportion is designed, and its mechanical performance is tested. According to the characteristics of karst caves, a semiclosed and pressurized karst cave simulation box is designed and manufactured to simulate grouting filling processes at construction sites, and an NWC-FM grouting simulation test is carried out. The results show that the fluidity of the NWC-FM slurry is good, and the strengths of the samples in the three groups of designed mix proportions meet the requirements of field construction. The underwater poured NWC-FM shows good fluidity, cohesion, nondispersibility, self-leveling, and self-compacting. After each pouring of NWC-FM material, a 2∼3 cm isolation layer eventually forms on the surface due to the action of the additives, which can effectively block the contact between water and NWC-FM and ensure the flatness of the underwater poured surface of the NWC-FM material. The average compressive strength of the NWC-FM consolidated core samples at 7 d, 14 d, and 28 d are 0.56 MPa, 0.72 MPa, and 0.79 MPa, respectively, meeting the technical strength requirements of construction sites. NWC-FM has strong underwater nondispersibility and moderate strength, which can well meet the requirements of karst cave filling treatment during shield construction of urban subways. Additionally, as a low-cost and environmentally friendly material, NWC-FM will greatly reduce the project cost and minimize environmental pollution.

Copyright: © Yanmei Ruan et al. et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10663804
  • Published on:
    09/05/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine