0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Study on Dynamic Compression Characteristics of Red Sandstone under Wetting-Drying Cycles

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-10
DOI: 10.1155/2020/6688202
Abstract:

To study the influence of wetting-drying cycles on dynamic mechanical properties of rock masses, the impact compression tests of red sandstone samples were carried out by using a split Hopkinson pressure bar (SHPB) apparatus with a diameter of 50 mm. The results showed that under the same number of wetting-drying cycles, the dynamic compressive strength of red sandstone increased exponentially with the strain rate, and the sensitivity of the strain rate decreased with the increase of wetting-drying cycles. The deterioration effect of wetting-drying cycles was significant, and the dynamic and static compressive strength decreased with the increase of wetting-drying cycles; the higher the strain rate, the stronger the sensitivity to wetting-drying cycles. Besides, the influence of wetting-drying cycles and strain rate was comprehensively studied, and the equation of dynamic compressive strength of red sandstone was obtained. After different wetting-drying cycles, the fractal characteristics of red sandstone dynamic fragmentation were obvious, and the fractal dimension was 2.02–2.80, and the fractal dimension increased logarithmically with the strain rate. Finally, the internal microstructure of red sandstone after different wetting-drying cycles was analyzed, and the degradation mechanism of the rock by the cycles was discussed.

Copyright: © Bin Du et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10535942
  • Published on:
    01/01/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine