0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Study on Dynamic Characteristics of Saturated Soft Clay with Sand Interlayer under Unidirectional and Bidirectional Vibration

Author(s):






Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 13
Page(s): 2534
DOI: 10.3390/buildings13102534
Abstract:

The marine and alluvial plains along the southeastern coast of China are widely distributed in sandy formations, including smaller sand lenses and interlayers. The interlayers of sand have a significant impact on the mechanical properties of soft clay. In this paper, a large number of undrained unidirectional and bidirectional cyclic loading tests for soft clay with sand interlayers were carried out by a dynamic triaxial test system. Test results show that, under unidirectional and bidirectional cyclic vibration, the area of the hysteresis loop decreases and the slope of the connecting line at both ends of the hysteresis loop increases with the increasing of frequency. For the same vibration frequency, the area of the bidirectional vibration hysteresis loop and the slope of the connecting line at both ends are smaller than that of the unidirectional cyclic vibration. Under the same dynamic stress ratio, cumulative axial deformation caused by unidirectional and bidirectional vibration increases with the increasing frequency. Under unidirectional vibration, dynamic elastic modulus decreases at first, and then increases with the increasing frequency. For the same frequency, dynamic elastic modulus of the sample increases with the increase in cycles. Due to the effect of radial cyclic stress, the curves of dynamic elastic modulus and damping ratio with frequency under bidirectional vibration are opposite to those under unidirectional vibration.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744488
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine