0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental study of the dynamic indentation damage in thermally shocked granite

Author(s):


Medium: journal article
Language(s): Finnish
Published in: Rakenteiden Mekaniikka = Journal of Structural Mechanics, , n. 1, v. 51
Page(s): 10-26
DOI: 10.23998/rm.69036
Abstract:

This paper presents an experimental procedure to study the effects of pre-existing cracks and damage on the rock behavior under dynamic indentation. To gain better understanding on the mechanism involved in percussive-rotary drilling procedure, a modified Split Hopkinson Pressure Bar device was used to carry out dynamic indentation tests, where rock drill buttons were impacted on rock samples with dimensions of 30 cm × 30 cm × 30 cm. Before the mechanical testing, the samples were thermally shocked using a plasma spray gun for periods of 3, 4, and 6 seconds. The plasma gun produces a powerful heat shocks on the rock sample, and even short exposures can change the surface structure of the samples and provide samples with different crack patterns and surface roughness for experimental testing. The effects of the heat shock damage on the dynamic indentation behavior of the rock were characterized with single- and triple-button indentation tests. The specific destruction work was used to characterize the effects of heat shocks on the material removal during dynamic indentation. The results show that the force-displacement response of the rock does not change much even if the rock surface is severely damaged by the heat shock, however, the destruction work decreases significantly. This means that the same loading removes more volume if the material surface is pre-damaged, and that the efficiency of the indentation process cannot be evaluated from the bit-rock interaction forces alone. The presented experimental framework can be a useful tool for the verification of numerical models where the rock microstructure and especially the microcracks are essential.

License:

This creative work has been published under the Creative Commons Attribution-ShareAlike 4.0 International (CC-BY-SA 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given and the same license is used as for the original work (the above link must be included). Any alterations to the original must also be mentioned.

  • About this
    data sheet
  • Reference-ID
    10677103
  • Published on:
    02/06/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine