0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Study of Mechanical Behavior of Dry-Stone Structure Contact

Author(s): ORCID
ORCID
ORCID



ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 14
Page(s): 3744
DOI: 10.3390/buildings14123744
Abstract:

Dry-stone structures are traditional constructions that are present everywhere around the world, with their stability working mostly by gravity. Contrarily to their in-plane behavior, their out-of-plane response is very brittle and is fully controlled by the geometry, as well as the contact properties, between units (stones). Two main local failure modes of dry-joint contact are identified to lead to the global failure of the structure: (i) sliding and (ii) joint opening. Most of the existing studies investigated full structures to obtain the global response and/or couplet only, with the aim of only characterizing the contact. The present experimental work studies the effect of sliding and joint opening between stones at different scales: couplets, structures made of a few (up to five) blocks, and full walls, as well as varying the way the masonry units are assembled within a single structure. Different stones are employed to quantify potential differences. All the structures are loaded up to the collapse with a tilting table to induce out-of-plane actions. Repeatability tests are also conducted to better understand the effect of contact variability. This study unveils that the heterogeneity of the dry-joint contact, as well as the repartition of the blocks, affects the global response (both in terms of load capacity and failure mode). It also confirms that the most critical local failure mode is produced by the joint opening.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810540
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine