0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Study and Numerical Simulation Analysis on Reinforcement of Mortise-Tenon Joints with Flat Steel Strips

Author(s): ORCID

ORCID



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2023
Page(s): 1-24
DOI: 10.1155/2023/5398662
Abstract:

To study the aseismic performance after the reinforcement of the mortise-tenon joints of folk houses with traditional Chuan-Dou style wood structure and their steel plate, test specimens of joints—two for Tou mortise-tenon joints, two for Ban mortise-tenon joints, and two for dovetail mortise-tenon joints—were fabricated out of hemlock, and steel plates were utilized to reinforce one of the joint specimens of each type on the middle part of the mortise-tenon joint. By carrying out pseudo-static tests on the joints and building ABAQUS numerical model; the position where the mortise-tenon joints were to be reinforced by the steel plates was optimized for a comparative analysis into the test results on reinforced and unreinforced mortise-tenon joints and the numerically simulated bending moment-turning angle hysteresis curve, skeleton curve, energy-dissipating capacity, and rigidity degeneration curves. The results showed the following: the pulling-out phenomenon of tenons was severe, and the aseismic performance of Tou tenons was superior to Ban tenons and dovetail tenons; reinforcing the middle part of mortise-tenon joints with steel plates could effectively reduce the pulling-out amount of joints and promote the aseismic performance of mortise-tenon joints but have an insignificant promotive effect for the bearing capacity of Tou mortise-tenon joints; the aseismic performance was improved significantly after the flat steel strip reinforced position was moved to the upper and lower ends of mortise-tenon joints, with the ultimate bearing capacities being 1.5∼2.4 times that on the middle part of flat steel strip reinforced joints.

Copyright: © Shurong Gan et al. et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10710991
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine