Experimental Research on the Creep Behavior of the Interface of Compacted Loess and High-Density Polyethylene Geogrid
Author(s): |
Yi-li Yuan
Chang-Ming Hu Jian Xu Yuan Mei Fang-Fang Wang Ge Wang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 27 April 2023, n. 5, v. 13 |
Page(s): | 1353 |
DOI: | 10.3390/buildings13051353 |
Abstract: |
The stability of geogrid-reinforced soil structure is closely related to the interface characteristics between geogrid and soil. However, the creep behavior of the soil–geogrid interface is still unrevealed. In this study, using a modified stress-controlled pullout device, influence of the normal pressure, dry density, and water content on creep behavior of interface of compacted loess and high-density polyethylene (HDPE) geogrid is investigated. A three-parameter empirical model and a Merchant element model were established through fitting analysis. Analysis results show that the normal pressure, dry density, and water content have significant effects on the creep shear displacement of the reinforced soil interface. Under the same pullout level, creep displacement of the interface increases with the increase of water content and decreases with the increase of dry density and normal pressure. Both the three-parameter empirical model and Merchant element model can describe the creep characteristics of the reinforced soil interface. The Merchant model is more accurate in the early stage, while the three-parameter empirical model is more suitable for predicting the long-term creep deformation of the interface of compacted loess and geogrid. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.54 MB
- About this
data sheet - Reference-ID
10728484 - Published on:
30/05/2023 - Last updated on:
01/06/2023