Experimental Investigations on Heat Transfer Characteristics of Direct Contact Liquid Cooling for CPU
Author(s): |
Cheng Liu
Hang Yu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 5 July 2022, n. 7, v. 12 |
Page(s): | 913 |
DOI: | 10.3390/buildings12070913 |
Abstract: |
Cooling systems can effectively enable information and communication technology (ICT) equipment to utilize power more efficiently in data centers (DCs). Two-phase cooling provides a potential method to cool CPUs and other electronics and involves submerging them in a thermal conductive dielectric liquid or coolant. In this study, an innovative cooling structure and a two-phase immersion cooling system procedure are presented. The CPU is directly submerged in an engineered fluid, and an experimental test is conducted to obtain the boiling heat transfer and energy consumption data. A prediction equation for saturated boiling HTC in the pool, based on the influence of the characteristics of the heat transfer surface of the CPU and the physical parameters, is proposed. The average partial power usage effectiveness (pPUE) value of the proposed system is 1.036, indicating a significantly improved energy conservation effect compared to conventional air cooling systems. Studies have shown that direct-touch heat dissipation is suitable for supercomputer server CPU heat dissipation with low heat flux density, while for high-density CPU heat dissipation, it is easy to reach the maximum temperature limit of the CPU, thereby reducing the CPU frequency. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.54 MB
- About this
data sheet - Reference-ID
10688652 - Published on:
13/08/2022 - Last updated on:
10/11/2022