Experimental Investigation on Seepage Stability of Filling Material of Karst Collapse Pillar in Mining Engineering
Author(s): |
Bangyong Yu
Zhanqing Chen Jiangyu Wu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2018, v. 2018 |
Page(s): | 1-10 |
DOI: | 10.1155/2018/3986490 |
Abstract: |
In northern China, groundwater inrush of Karst collapse pillar (KCP) often affects the coal mining process. Current studies rarely consider the seepage stability of filling materials of KCP, especially through experimental investigations. This study is to quantify the impacts of variable initial porosity and cementing strength on the seepage properties of filling material. For this purpose, we designed and fabricated a test system. This system can offer high water pressure and abundant water flow rate. We tested three types of specimens which were cemented by clay, gypsum, and cement, respectively. The seepage properties were obtained under the initial porosity of 0.11, 0.13, 0.15, and 0.17, respectively. The change mechanism of seepage properties was measured through the comparison between mass loss and mass gain. The results showed the followings findings: (1) The permeability-time curves have two types: the first type is that permeability gradually increases up to the occurrence of seepage instability and the second type is that permeability gradually decreases and approaches to a stable value. No seepage instability is observed. (2) Initial porosity and cementing material significantly affect the water flow properties of filling material. In general, larger initial porosity has larger permeability. For clay as cementing material, seepage instability occurs soon and higher initial porosity has shorter time to reach seepage instability. For gypsum, seepage instability occurs after a period of time when initial porosity is large enough. For cement, the permeability decreases gradually and approaches to a stable value. The permeability-time curves have rapid decrease and slow decrease. (3) The permeability has a magnitude of 10−15–10−13 m² and varies with initial porosity and cementing materials. The permeability is the largest for clay cementing and is the smallest for cement cementing. |
Copyright: | © 2018 Bangyong Yu et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.17 MB
- About this
data sheet - Reference-ID
10176384 - Published on:
30/11/2018 - Last updated on:
02/06/2021