0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Investigation on Effects of Bacterial Concentration, Crack Inclination Angle, Crack Roughness, and Crack Opening on the Fracture Permeability Using Microbially Induced Carbonate Precipitation

Author(s):
ORCID


ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-15
DOI: 10.1155/2021/4959229
Abstract:

Uncontrollable leakage has significant effects on the safety of fractured rock mass, and microbially induced carbonate precipitation (MICP) is an effective way to control the seepage. In this study, four sets of seepage experiments are conducted on transparent rock-like specimens containing MICP filled single cracks to investigate the effects of bacterial concentration, crack inclination angle, crack roughness, and crack opening on fracture permeability. The experimental results show that calcium carbonate precipitation is produced when Sporosarcina pasteurii and cementing fluid are injected into the cracks, which can seal the cracks and reduce the permeability of the cracks. Moreover, the calcium carbonate produced by Sporosarcina pasteurii increases with increasing bacterial concentration. Furthermore, the fracture permeability of the MICP filled crack increases first and then decreases with increasing inclination, roughness, and opening of cracks. The experimental results provide a better understanding of the influence of different construction conditions on fracture permeability when the MICP technology is applied in rock engineering.

Copyright: © Yulin Zou et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10613223
  • Published on:
    09/07/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine