0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Investigation of the Shear Behavior of a Concrete Beam without Web Reinforcements Using External Vertical Prestressing Rebars

Author(s):






Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-13
DOI: 10.1155/2019/3452056
Abstract:

The shear performance of concrete beams is known to be an important mechanical feature; hence, enhanced shear resistance is critical for determining a beam's performance in terms of security and service life. This paper presents a study on the shear behavior of concrete beams without web reinforcement strengthened by external vertical prestressing rebars (EVPRs). Experimental data were obtained from seven test beams with varying influencing factors (stirrup ratioρsEP, arrangement spacings, prestressing forceFp, and compressive stress degreeγpof the EVPRs) to determine their effects on the shear behavior. The results reveal that the EVPRs can significantly improve the shear capacity and ductility of concrete beams without web reinforcement. Furthermore, the failure mode is changed from brittle diagonal tension to relatively ductile shear compression, and the flexural cracks and shear cracks are more fully developed. The shear capacity becomes enhanced as theρsEPandγpare increased; vertical compressive stress provided by the EVPRs can reduce the principal tensile stress of the concrete structure to prevent the shear cracking and enhance the shear resistance of the concrete. Meanwhile, in the stage from the formation of the critical shear crack (CSC) to the shear failure, the EVPRs can be used as stirrups to share the shear load. It can be concluded that EVPRs can effectively improve the shear performance of concrete beams.

Copyright: © 2019 Xingwei Xue et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10315150
  • Published on:
    24/06/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine