0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Investigation of Shear Behavior in High-Strength Concrete Beams Reinforced with Hooked-End Steel Fibers and High-Strength Steel Rebars

Author(s):



ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 13
Page(s): 2106
DOI: 10.3390/buildings13082106
Abstract:

Shear failure is an unfavorable phenomenon as it is a brittle type of failure; however, adding rebars and fibers to a concrete beam can minimize its detrimental effects. The objective of this study was to experimentally investigate the shear behavior of high-strength concrete (HC) beams reinforced with hooked-end (H) steel fibers and high-strength steel (HS) rebars under three-point bending tests. For this purpose, nine HC beams (300 × 250 × 1150 mm in dimension) were cast with 0%, 1%, and 2% H fibers by volume in three longitudinal rebar ratios (i.e., 1.5%, 2.0%, and 3.1%) and compared with beams without fibers. Furthermore, numerical analyses were performed to validate the experimental results and compare them with design codes. The results showed that, irrespective of the fiber content or longitudinal rebar ratio, the beams failed in shear. Increasing the rebar ratio and fiber content increased the shear capacity to as high as 100% (for the specimen with 3% rebar and 2% fiber compared to its counterpart with 1% rebar and 2% fiber). In addition, the research-based equations proposed in the literature either overestimated or underestimated the shear capacity of fibrous HC beams significantly. The level of overestimation or underestimation was closely related to the sensitivity of the proposed model to the shear span ratio and the fiber content. Rebars proved to be more beneficial in contributing to the shear capacity, but the rate of this positive contribution decreased as the fiber ratio increased. Finally, the inverse analysis approach adopted herein proved to be an efficient tool in estimating the shear response of fiber-reinforced beams failing in shear (margin of error: less than 10%).

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737233
  • Published on:
    02/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine