0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Insight into the Containment of Plastic Waste in Cement-Stabilised Soil as a Road Pavement Layer Material

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 12, v. 7
Page(s): 172
DOI: 10.3390/infrastructures7120172
Abstract:

Plastic waste (PW) constitutes a nuisance to our environment despite several efforts to reduce, reuse and recycle it. This study experimentally explores the possibility of storing plastic waste within a cement-stabilised soil that can be used as a road pavement layer material without adversely affecting the geotechnical characteristics of the stabilised soil. The soil is an A-2-6 soil, according to classification by the American Association of State Highway and Transportation Officials (AASHTO). Compaction characteristics, the California bearing ratio (CBR) and the unconfined compressive strength (UCS) of soil with 10% cement were determined for the 0, 2, 5, 10 and 15% addition of PW. The cementing of soil particles, which played a vital role in enhancing its strength on the addition of cement, may have been activated by the pozzolanic reaction between cement and soil particles. However, the addition of PW to this cement-stabilised mix led to a decrease in strength parameters at all variations. The soil with 10% cement and 2% PW yielded higher strength when compared to other mix ratios with PW and is suitable for use as a layer material in road pavement construction. As a sustainable strategy for PW management in developing nations, the usage of PW in cement-stabilised soil layer is recommended.

Copyright: © 2022 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10722772
  • Published on:
    22/04/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine