Experimental and Numerical Study on the Insulation Performance of a Photo-Thermal Roof in Hot Summer and Cold Winter Areas
Author(s): |
Ying Zhang
Hongfa Sun Jibo Long Li Zeng Xiaohang Shen |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 11 April 2022, n. 4, v. 12 |
Page(s): | 410 |
DOI: | 10.3390/buildings12040410 |
Abstract: |
The use of a solar architecture system is a feasible way to reduce the energy consumption of a building. The system also has important significance to the “Dual-carbon” plan. In this study, the heat transfer characteristics of a photo-thermal roof were analyzed in hot summer and cold winter zones; a model to calculate insulation performance was established. In the summer climate, the thermal performances of the photo-thermal roof and an ordinary roof were explored through experiments and simulations. The results showed that the heat transfer and temperature of the photo-thermal roof were lower than those of the ordinary roof. Heat transfer through a photo-thermal roof can be changed by adjusting the water flow of collectors. The water saturation of insulation materials is an important factor that affects the insulation performance of a roof. Compared with the ordinary roof, the change in water saturation was shown to have less impact on the insulation performance of the photo-thermal roof. The water saturation increased from 0 to 30%, while the heat transfer per unit area of the photo-thermal roof only increased by 0.9 W/m²; 97.3% lower than that of the ordinary roof. The effect of reducing the insulation material thickness was less for the photo-thermal roof than for the ordinary roof. When the insulation material thickness was reduced from 100 mm to 0 mm, the average temperature in the indoor non-working area reached 38.5 °C and 27.1 °C in the ordinary roof and the photo-thermal roof, respectively. The insulation thickness of the photo-thermal roof had little effect on the indoor air temperature. The research results provide a reference for the roof energy-saving design of new buildings and the roof energy-saving transformation of existing buildings. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.58 MB
- About this
data sheet - Reference-ID
10664368 - Published on:
09/05/2022 - Last updated on:
01/06/2022