0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental and Numerical Study on Rapid Evacuation Characteristics of Staircases in Campus Buildings

Author(s):

ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 12
Page(s): 848
DOI: 10.3390/buildings12060848
Abstract:

In this work, we conducted downward evacuation experiments in four types of staircases under various smoke visibility conditions of the naked eye, wearing sunglass and wearing eyeshades. Ten male and ten female college students were recruited to conduct the evacuation as a single male, single female, two males supporting one another, two females supporting one another and one male carrying another on his back. The evacuation time on each floor was recorded. The corresponding evacuation models were established by Pathfinder and verified against the test data. The effects of evacuation crowd density and response time considering gender factors on the evacuation time were simulated using the models. The results show that under the experimental condition of low visibility, the curve of evacuation time presents a stable state, whose change with the increase in the floors is not obvious. The increase in the evacuation time under different visibility indicates that males have better adaptability to the environment than females. The curves of SSP (straight running stairs with platform) and DSS (double split parallel stairs) are smoother than those of DPS (double running parallel stairs) and CS (corner stairs), indicating less pressure and less congestion during evacuation. During the emergency evacuation, the crowd pressure on the platform of the staircases is small. The front section of the flight and the corner part of the staircases are prone to congestion during evacuation. Under the influence of gender factors, since the response time of males is longer than that of females, the smaller the proportion of males, the smaller the time growth rate considering the reaction time. With the increase in crowd density, the effect of response time on total evacuation time becomes smaller.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10688450
  • Published on:
    13/08/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine