Experimental and Numerical Study on Axial Compression Cold-Formed Steel Composite Wall under Concentrated Loads
Author(s): |
Bin Yao
Haojie Fang Zhenghao Qian Qiang Wang Jian Sun Weiyong Wang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 27 April 2023, n. 5, v. 13 |
Page(s): | 1232 |
DOI: | 10.3390/buildings13051232 |
Abstract: |
This paper presents the experimental and numerical studies in the investigation of the concentrated compressive behaviors of cold-formed steel-foam concrete composite wall. The failure modes, load–displacement curves, and load–strain curves of the specimens were obtained from the experiments. The infilled specimen failed due to distortional buckling of the end stud and cracking of the concrete near the corner of the wall. The strength of the high strength cold-formed steel was not being fully utilized. A finite element model was established by ABAQUS software and validated by the test results to investigate the effect of the concrete strength, steel strength, the spacing between stud openings, and the thickness of the concrete protective layer on the behaviors of the composite wall. The results indicate that the improvement of concrete strength has the most obvious effect on the bearing capacity of the composite wall, while the changes in steel strength, concrete cover thickness, and hole spacing have limited effects. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
8.26 MB
- About this
data sheet - Reference-ID
10728268 - Published on:
30/05/2023 - Last updated on:
01/06/2023