Experimental and Numerical Studies on the Negative Flexural Behavior of Steel-UHPC Composite Beams
Author(s): |
Xinhua Liu
Jianren Zhang Zihan Cheng Meng Ye |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2021, v. 2021 |
Page(s): | 1-15 |
DOI: | 10.1155/2021/8828175 |
Abstract: |
The cracking of concrete in the negative moment region for a composite beam subjected to a negative bending moment reduces the beam’s strength and stiffness. To improve the cracking performance of composite beams, this paper presents an experimental investigation on applying ultrahigh-performance concrete (UHPC) instead of conventional concrete. Three steel-UHPC composite beams with different forms of joints were designed and tested through a unique rotation angle loading method using a spring displacement control testing setup. The crack distribution, rotation versus crack width, load versus spring displacement, and strains in the UHPC slab and steel girders were measured and studied. Nonlinear finite element analysis using ABAQUS based on the damaged plasticity model of concrete was carried out for comparison with the test results. The experimental and numerical results showed that the use of a UHPC slab can enhance the cracking performance of composite beams. Considering the convenience of construction, a reasonable joint form was suggested, and the appropriate UHPC longitudinal laying length in the negative moment region was proposed to be 0.1 L. Furthermore, a simplified formula for calculating the UHPC crack width was developed based on bond-slip theory. |
Copyright: | © Xinhua Liu et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.84 MB
- About this
data sheet - Reference-ID
10560650 - Published on:
03/02/2021 - Last updated on:
02/06/2021