0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental and Numerical Research on Fracture Properties of Mass Concrete Under Quasi-Static and Dynamic Loading

Author(s):






Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 14
Page(s): 3312
DOI: 10.3390/buildings14103312
Abstract:

The dynamic fracture behavior of mass concrete is crucial to the dynamic analysis and safety evaluation of concrete dams subjected to strong earthquake shocks in the framework of fracture mechanics. In the presented research, cylindrical specimens with a ring of preset cracks were cast by three-graded mass concrete, and direct tension tests were performed with two loading rates considered, i.e., 10−6/s for quasi-static loading and 10−3/s for dynamic loading. The load–crack mouth opening displacement (P-CMOD) curves were obtained, from which the fracture toughness, fracture energy, and characteristic length of the mass concrete were obtained. In this process, the influence of the eccentricity in the tests was compensated by the numerical modeling of the tests. Next, the crack propagation process of the mass concrete was modeled using the extended finite element method. From the test results, it is found that, under quasi-static loading, the crack generally propagates along the interface between the aggregates and the matrix, while, under dynamic loading, more aggregates are fractured. As compared to the case of quasi-static loading, the energy absorption capacity, fracture energy, and fracture toughness increase for dynamic loading, while the characteristic length decreases. Moreover, the numerically predicted P-CMOD curves agree reasonably well with the experimental measurements.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10804814
  • Published on:
    10/11/2024
  • Last updated on:
    10/11/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine