0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental and Numerical Investigations on Flexural Behaviour of Prestressed Textile Reinforced Concrete Slabs

Author(s):
ORCID
Medium: journal article
Language(s): English
Published in: Civil Engineering Journal, , n. 6, v. 7
Page(s): 1084-1097
DOI: 10.28991/cej-2021-03091712
Abstract:

Nowadays, concrete is mostly prestressed with steel. But the application of prestressing steel is restricted in a highly corrosive environment area due to corrosion of prestressing steel, leading to a reduction in strength and may cause sudden failure. Carbon textile is considered an alternate material due to its corrosive resistance property, high tensile strength, and perfectly elastic. Prestressing is also the only realistic way to utilize fully ultra-high tensile strength in carbon textile material. In this study, experimental and numerical analyses were carried out for the flexural behaviour of prestressed and non-prestressed carbon textile reinforced concrete slabs. This study also focuses on the influences of textile reinforcement ratios, prestressing grades on the flexural behaviour of carbon textile reinforced concrete (TRC). Fifteen precast TRC slabs were tested, of which six were prestressed to various levels with carbon textile. The obtained results show that prestressing textile reinforcement results in a higher load-bearing capacity, stiffness, and crack resistance for TRC slabs. The first-crack load of the prestressed specimens increased by about 85% compared with those of non-prestressed slabs. Three-dimensional finite element models were developed to provide a reliable estimation of global and local response. The modeling techniques accurately reproduced the experimental behaviour. 

Copyright: © 2021 Dang Quang Ngo, Huy Cuong Nguyen
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10610622
  • Published on:
    08/06/2021
  • Last updated on:
    10/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine