0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental and Numerical Characterization of Non-Proprietary UHPFRC Beam—Parametric Analyses of Mechanical Properties

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 13
Page(s): 1565
DOI: 10.3390/buildings13061565
Abstract:

Fabrication of ultra-high-performance concrete (UHPC) is costly, especially when commercial materials are used. Additionally, in contrast to conventional concrete, numerical procedures to simulate the behaviour of ultra-high-performance fibre-reinforced concrete (UHPFRC) are very limited. To contribute to the foregoing issues in this field, local materials were used in the fabrication process, while accounting for environmental issues and costs. Micro steel fibres (L: 13 mm, d: 0.16 mm, and ft: 2600 MPa; L: length, d: diameter, ft: tensile strength) were used in 2% volumetric ratios. Compression and indirect tests were carried out on cylindrical and prismatic beams according to international standards. To further enrich the research and contribute to the limited simulation data on UHPFRC, and better comprehension of the parameters, numerical analyses were performed using the ATENA software. Finally, nonlinear regression analyses were employed to capture the deflection-flexural response of the beams. The results were promising, indicating cost-effective fabrication using local materials that met the minimum requirements of UHFRC in terms of compressive strength. Furthermore, inverse analysis proved to be an easy and efficient method for capturing the flexural response of UHPFRC beams.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10732845
  • Published on:
    04/08/2023
  • Last updated on:
    07/08/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine