0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Evolution of Thermal Conductivity and Pore Structure for Coal under Liquid Nitrogen Soaking

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-8
DOI: 10.1155/2020/2748092
Abstract:

An experimental system for liquid nitrogen soaking and real-time temperature measurement was designed and implemented to investigate the characteristics of temperature field changes in coal under liquid nitrogen soaking. Then, the heat conduction law of the coal in the process of liquid nitrogen soaking and room temperature recovery for dry and water-saturated coal were examined. The microstructure characteristics of the coal before and after liquid nitrogen soaking were analyzed with nuclear magnetic resonance (NMR) technology. The results showed that, during the liquid nitrogen cold soaking process, the heat transfer law of the dry and water-saturated coal samples exhibited a notable three-stage distribution. For the room temperature recovery process, the dry and water-saturated coal samples exhibited rapid heating characteristics, and the cooling rate gradually decreased to zero. NMR test results indicated that the liquid nitrogen soaking increased the number of micro and small pores in the coal. Thermal stress analysis revealed that the thermal stress generated by the dry coal was larger than that produced by the saturated coal, and the damage was primarily caused by thermal stress. However, the permeability of the saturated coal was better than that of the dry coal. The damage on the saturated coal was caused by the volume expansion of pores and fissures caused by water-ice phase transition.

Copyright: © 2020 Bo Li et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10427162
  • Published on:
    13/07/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine