0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Evaluation of Two Chilean Native Macroalgae: “Pelillo” (Gracilaria chilensis) and “Lamilla” (Ulva sp.) for Thermal Insulation Application

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 13
Page(s): 2622
DOI: 10.3390/buildings13102622
Abstract:

Energy consumption in the residential sector and air pollution are relevant topics for the global population. One of the causes, especially in cold climate cities, is that buildings maintain a high energy consumption for heating and cooling, primarily using low-efficiency biomass combustion for heating, which releases a significant amount of particulate matter into the environment. In this context, thermal insulation materials play a crucial role in reducing the energy demand of buildings, requiring advancements in the sustainable development of such materials within the context of climate change. This study carried out an evaluation of two algae species found along the Chilean coasts, with the aim of characterizing them and creating a prototype of a sustainable material. Their physicochemical properties were analyzed, and the results demonstrate that the algae exhibit excellent thermal insulation properties, with an average thermal conductivity of 0.036 [W/mK]. This result is comparable to expanded polystyrene (EPS), a widely used material in the Chilean and global markets, which has an average thermal conductivity value of 0.038 [W/mK]. Additionally, the algae show a good thermal stability, and their morphology contributes to the development of a bulk material, as they possess a porous structure with air chambers between the fibers.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744383
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine