0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Evaluation of the Seismic Behavior of RC Buildings through the Direct Modeling of Masonry Infill Walls

Author(s):
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 13
Page(s): 1576
DOI: 10.3390/buildings13071576
Abstract:

The direct modeling of masonry infill walls on many buildings, based on damage recorded by various past earthquakes, has become increasingly necessary in order to identify the seismic behavior of these elements, which constitute an important part of reinforced concrete buildings. In this paper, several 3D models were analyzed by the nonlinear static (pushover) method, when ignoring, and when considering, masonry infill walls. The finite element software SAP analyzed the proposed models. These models represent low and mid-rise reinforced concrete buildings infilled with double-leaf hollow bricks. The properties of materials used in Algeria, either in the frame elements or the infill elements, were used. The results obtained were compared according to two parameters, the natural time period of the building and the pushover curve, by varying the values of the dead load and the concrete compressive strength. The results were discussed according to the suggested parameters. The results showed that indirect modeling of such walls, either by taking assumptions embedded in the seismic behavior factor or by means of the macro-modal, can lead to a poor appreciation of the seismic behavior of such buildings. Consequently, direct modeling of walls by the infill of the real void showed acceptable results to some extent. This contributes greatly towards understanding the seismic behavior of this type of building.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737576
  • Published on:
    03/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine