0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Evaluation of the Impact of the Envelope System on Thermal Energy Demand in Hospital Buildings

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 10
Page(s): 250
DOI: 10.3390/buildings10120250
Abstract:

Construction materials and systems for the thermal building envelope have played a key role in the improvement of energy efficiency in buildings. Urban heat islands together with the upcoming rising global temperature demand construction solutions that are adapted to the specific microclimate conditions. These circumstances are even more dramatic in the case of healthcare buildings where the need to preserve constant indoor temperatures is a priority for the proper recovery of patients. A new neonatal hospital, located in Madrid (Spain), has been monitored, and building energy simulations were performed to evaluate the effect of the building envelope on the energy demand. Based on the simulation results, the design of the building envelope was found to be insufficiently optimised to properly protect the building from the external heat flow. This is supported by the monitored results of the indoor temperatures, which went over the standard limit for about 50% of the hours, achieving up to 27 °C in June and July, and 28 °C in August. The results showed, on one hand, that solar radiation gains transmitted through the façade have an important impact on the indoor temperature in the analysed rooms. Heat gains through the opaque envelope showed an average of 8.37 kWh/day, followed by heat gains through the glazing with an average value of 5.29 kWh/day; while heat gains from lighting and occupancy were 5.21 kWh/day and 4.47 kWh/day, respectively. Moreover, it was shown that a design of the envelope characterised by large glass surfaces and without solar protection systems, resulted in excessive internal thermal loads that the conditioning system was not able to overcome.

Copyright: © 2020 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10535701
  • Published on:
    01/01/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine