Evaluation of the Dynamic Parameters Under Seismic Conditions for a Maxwell Rheological Base Isolation System
Author(s): |
Polidor Bratu
Patricia Murzea Oana Tonciu Nicusor Dragan Cornelia Florentina Dobrescu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 18 December 2024, n. 12, v. 14 |
Page(s): | 4075 |
DOI: | 10.3390/buildings14124075 |
Abstract: |
The connections of seismic isolation devices for mitigating seismic shocks in the fundamental excitation mode are designed and implemented based on the serial combination of elastomeric isolators, which are primarily elastic, with fluid-based isolators, which are primarily viscous. The energy dissipated in the fluidic isolators represents a significant parameter for ensuring the attenuation degree of the amplitude of the displacement of the system as well as for its energy dissipation capacity as a direct effect on deformability and speed of the heat transfer. For bridges, viaducts, and buildings, families of elastomeric and fluid isolators connected in series are used to enable both analytical and experimental evaluations of the system’s dynamic isolation and energy dissipation capacities. Based on the results obtained from specialized isolation devices from Italy and the numerical and experimental evaluations carried out by ICECON S.A. Bucharest, Romania, this article will address the aforementioned topic. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.62 MB
- About this
data sheet - Reference-ID
10810680 - Published on:
17/01/2025 - Last updated on:
25/01/2025