0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Evaluation of Skid Resistance and Comfort of Pedestrian Pavement with Asphalt-Based Wood Chip

Author(s):









Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 14
Page(s): 1512
DOI: 10.3390/buildings14061512
Abstract:

This paper conducts an in-depth study and evaluation of pedestrian paths, with a particular focus on the anti-slip performance and walking comfort of wooden chip pedestrian walkways. Through controlled experiments, a comparative analysis was performed between wooden chip pedestrian walkways and ordinary paved brick walkways. The experimental results indicate that under dry conditions, the anti-slip performance of various road surfaces is good. However, in wet environments, the anti-slip performance of paved brick roads deteriorates significantly. In contrast, wooden chip pedestrian walkways, especially those mixed with asphalt and wood chips, exhibit excellent anti-slip properties and comfort. Additionally, the study reveals that the comfort of wooden chip pedestrian walkways is significantly better than that of paved brick walkways, and the comfort of asphalt materials is slightly better than emulsified asphalt. It is worth mentioning that fine wood chips provide less comfort than coarse wood chips. Although reducing the thickness can enhance comfort, considering the service life of the road, a thickness of 4–6 cm is most suitable. Finally, asphalt and wooden chip mixtures with coarse wood chips possess good water permeability, making them suitable for permeable drainage pavement designs, effectively reducing road surface water accumulation.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10787936
  • Published on:
    20/06/2024
  • Last updated on:
    20/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine