0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Evaluation of Moisture-Induced Stresses in Wood Cross-Sections Determined with a Time-Dependent, Plastic Material Model during Long-Time Exposure

Author(s): ORCID

ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 937
DOI: 10.3390/buildings14040937
Abstract:

In recent years, the use of timber as a building material in larger construction applications such as multi-story buildings and bridges has increased. This requires a better understanding of the material to realize such constructions and design them more economically. However, accurate computational simulations of timber structures are challenging due to the complexity and inhomogeneity of this naturally grown material. It exhibits growth inhomogeneities such as knots and fiber deviations, orthotropic material behavior and moisture dependence of almost all physical parameters. Describing the creep response of wood under real climate conditions is particularly difficult. Changes in moisture content, plasticity and viscoelasticity affect moisture-induced stresses and potentially lead to cracks and structural damage. In this paper, we apply a material model that combines time and moisture-dependent behavior with multisurface plasticity to simulate cross-sections of different dimensions over a 14-month climate period. Our findings indicate that considering this long-term behavior has a minor impact on moisture-induced stresses during the drying period. However, during the wetting period, neglecting the time- and moisture-dependent material behavior of wood leads to a significant overestimation of tensile stresses within the cross-section, resulting in unrealistic predictions of wetting-induced fracture. Therefore, simulations during wetting periods require a sophisticated rheological model to properly reproduce the stress field.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773621
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine